Problem Description

e Gaussian Processes (GPs) are useful regression models with infinite
number of parameters.

e Zero-mean GP marginal likelihood is

N (y|0,Kpp+o.T) (1)

where (Kp p); ; = k (@i, z;), 0- = variance of observation noise.
e Computing KBID is O(NN?) operation = infeasible for large V.

e Sparse approximations accelerate inference, O(NM?), but little work
on understanding their properties.

e Analysis directly applicable to regularly-sampled time series. Approxi-
mations discussed can also be used to accelerate inference in this case.

Sparse Approximations

State-of-the-art is [Titsias, 2009] - investigation therefore focuses on this.
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Figure 2: Depiction of speed vs. accuracy trade-off in extreme case. (blue=full GP, red=sparse approx.).
(Left: 24 pseudo-data. Right: 20 pseudo data.)

Despite a small change in the number of pseudo-data, a qualitative

change in the approximation is observed.
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Circulant Approximations
to the Covariance Matrix

o If regularly spaced data and stationary k£ then Kp p is Toeplitz.

o Toeplitz Kp p =~ Circulant, which is easily inverted (see [Gray, 2006]).
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Figure 3: Visualisation of the circulant approximation for an RBF covariance matrix with lengthscale
0.05, computed between data spaced uniformly on [—0.25,0.25]. Left: Exact Toeplitz covariance matrix.
Right: Circulant approximation to exact covariance matrix.

Accelerated computations via
the Fast Fourier Transform

The posterior mean for a full GP at the observed inputs is

ms= Kpp (KD7D+J727JI)_1y. (2)
It Kp p is approximately circulant then

my~ FTL (Tp+02Z) FTpy (3)

where the matrix FTp is the Discrete Fourier Transform (DFT) matrix,
FTZTD is the Inverse DFT matrix and 1'p is a diagonal matrix whose ele-
ments are given by the DFT of the first row of circulant Kp p.

Understanding the properties of sparse Gaussian Process

Posterior Mean Prediction Error

o Sparse predictive mean s has same form as full (equation 2).

e |s also approximated as in equation (3. Diagonal of I'p truncated to

first M elements.
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where ¢ := FT py and {%}?:_01 comprise the diagonal of I'p.

e Error a function of lost high-frequency information..

e Sparse approximation accurate if either kernel or data do not contain
frequencies higher than those supported by approximation.

Summary and future work

e [ he properties of sparse approximations can be highly sensitive to the
number of pseudo-data.

e Under certain conditions a simple expression is available for the accu-
racy of a sparse-approximation.

e More experimental validation to be undertaken.
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